A Proposed Hybrid Technique for Recognizing Arabic Characters

نویسنده

  • S. F. Bahgat
چکیده

Optical character recognition systems improve human-machine interaction and are urgently required for many governmental and commercial departments. A considerable progress in the recognition techniques of Latin and Chinese characters has been achieved. By contrast, Arabic Optical Character Recognition (AOCR) is still lagging although the interest and research in this area is becoming more intensive than before. This is because the Arabic is a cursive language, written from right to left, each character has two to four different forms according to its position in the word, and most characters are associated with complementary parts above, below, or inside the character. The process of Arabic character recognition passes through several stages; the most serious and error-prone of which are segmentation, and feature extraction & classification. This research focuses on the feature extraction and classification stage, being as important as the segmentation stage. Features can be classified into two categories; Local features, which are usually geometric, and Global features, which are either topological or statistical. Four approaches related to the statistical category are to be investigated, namely: Moment Invariants, Gray Level Co-occurrence Matrix, Run Length Matrix, and Statistical Properties of Intensity Histogram. The paper aims at fusing the features of these methods to get the most representative feature vector that maximizes the recognition rate. KeywordsOptical Character Recognition; Feature Extraction; Dimensionality Reduction; Principal Component Analysis; Feature Fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Isolated Character Recognition using Hidden Markov Models

This paper presents a recognition system for Arabic handwritten isolated characters. The recognition system is based on hidden Markov model (HMM). The entire system is capable of recognizing the Arabic handwritten characters. First, the system removes all the variation in the character images. Second, Features are extracted using the sliding window technique with HMM. Then, the HMM is used for ...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition

Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analy...

متن کامل

Hybrid Arabic Handwritten Character Recognition Using PCA and ANFIS

In this paper we will present a two phase method for isolated Arabic handwritten character recognition system. The proposed system is a hybrid system that uses the principal component analysis (PCA) feature technique and neuro-fuzzy classifier. The Adaptive Neural Network Fuzzy Inference System (ANFIS)were used at all levels of the character recognition stages with different learning algorithms...

متن کامل

On-line Handwritten Arabic Character Recognition using Artificial Neural Network

In this paper, an efficient approach for the recognition of online Arabic handwritten characters is presented. The method employed involves three phases: First, pre-processing in which the original image is transformed into a binary image .Second , training neural networks with feed-forward back propagation algorithm .Finally, the recognition of the character through the use of Neural Network t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012